
Hacking with Multi-touch for Java (MT4j)

Craig Anslow
Department of Computer Science

Middlesex University
London, United Kingdom
c.anslow@mdx.ac.uk

Stuart Marshall, James Noble
School of Engineering and Computer

Science
Victoria University of Wellington

Wellington, New Zealand
{stuart,kjx}@ecs.vuw.ac.nz

Robert Biddle
School of Computer Science

Carleton University
Ottawa, Canada

robert.biddle@carleton.ca

Abstract
Developing applications for touch devices is hard. Develop-
ing touch based applications for multi-user input is harder.
The Multi-Touch for Java (MT4j) toolkit supports develop-
ing touch based applications for multiple users. In this paper,
we outline our experience using MT4j for developing a num-
ber of software applications to support developers working
in co-located teams. Our experience using the toolkit will
help developers to understand the nuances of the toolkit and
design issues that can be applied to other toolkits for devel-
oping multi-user touch based applications.

Categories and Subject Descriptors H.5.2 [User Inter-
faces]: Input Devices and Strategies

General Terms Design

Keywords Programming, Multi-Touch, Java, Visualization

1. Introduction
Designing touch based applications for devices larger than
phones or tablets (e.g. digital tabletops and walls) is chal-
lenging especially when you require multi-user collabora-
tion (e.g. pairs or groups) [2]. Some programming languages
have touch features but very few of them have been designed
to support multi-user input. There are a number of toolk-
its in different programming languages that support multi-
user interaction and multi-touch gestures [13]. A few sur-
veys outline and compare some existing multi-touch toolkits
and frameworks [4, 7]. We have explored a number of these
toolkits for developing different applications.

The Simple Multi-touch Toolkit (SMT)1 is based around
the concept of touch-enabled zones, is built on top of the
Processing toolkit [9], and is also available as a standalone
Java library. SMT natively supports TUIO [6] and works
on Windows Touch, Leap Motion, and SMART SDK, but
also provides a multi-touch simulator to support non-touch
enabled environments with a mouse. SMT was designed to
support students and used in undergraduate HCI courses
experimenting with multi-touch input but has also been used
to develop several applications.

PyMT2 is an open source multi-touch framework for
Python. Kivy3 is another Python based toolkit which evolved
from PyMT to make the toolkit more robust. Kivy is an
open source library for developing mobile apps and other
multitouch application software with a natural user interface
(NUI). Kivy can run on Android, iOS, Linux, OS X, and
Windows.

lbavg4 is a C++ touch library and uses OpenGL for dis-
play output. libavg runs on on Linux, Mac OS X and Win-
dows, and is open source. Cinder5 is also a C++, free, and
open source library for professional-quality creative coding.

A number of JavaScript gesture based toolkits exist such
as Hammer.js6 for developing touch based applications in a
web browser. However, the focus of these web based touch
toolkits is on supporting basic atomic touch gestures (e.g.
tap, press, pinch, swipe, pan, and rotate) and not necessarily
large interactive devices that support multi-user interaction
for group work. We are particularly interested in developing
applications designed for multiple users and different hard-
ware form factors. We describe our experience at using one
of these toolkits, MT4j for developing collaborative software
team applications.

1 http://vialab.science.uoit.ca/smt/
2 https://github.com/tito/pymt
3 https://kivy.org
4 https://www.libavg.de/
5 https://libcinder.org/
6 http://hammerjs.github.io/



Figure 1. MT4j architecture overview [8].

2. Multi-touch for Java (MT4j)
Multi-touch for Java (MT4j) is an open source (LGPL)
multi-touch application development toolkit [8]. MT4j pro-
vides high level functionality and aims at providing a toolkit
for easier and faster development of multi-touch multiple
user applications. The toolkit was developed by Fraunhofer
researchers in Stuttgart in 2010. There are several require-
ments and challenges which MT4j addresses in a generic
and reusable way:

Portability: supports different operating systems, hardware
detection protocols, and input hardware (e.g. tablets,
tabletops).

Input Abstraction: supports common atomic multi-touch
gestures and the ability to customize gestures. The ges-
ture recognition and gesture processing is flexible and
extensible.

Performance and Graphics: uses high performance ren-
dering capabilities such as OpenGL.

UI Integration: supports a range of UI components which
allow extensibility and integration with other Java li-
braries to develop rich user interfaces.

Figure 1 shows the architecture of MT4j. The architecture
contains different layers that communicate through events
sent from one layer to the next. The emphasis on the input
layers represents the importance of a flexible input architec-
ture. Performance issues are mainly addressed by the pre-
sentation layer. The architecture resembles a reduced MVC
design, with the input layer representing the controller and
the presentation layer representing the view.

Figure 2. MT4j input processing [8].

Various input hardware is supported with only minimal
adjustments required in the input hardware abstraction layer.
In this abstraction layer, raw input data is converted into
unified input events. A set of input providers exists including
mouse, keyboard, and multi-touch input protocols such as
WM TOUCH and TUIO [6].

The input processing occurs at two stages in the event
flow, see Figure 2. The first stage is global input processing
where input processors can be registered which subsequently
listen directly to the various input sources. This stage is used
when all input has to be processed and allows modification
of user input before it is passed up to the next layer. The
second stage is component input processing which allows
processing of input that was targeted at one component only
(e.g. rotate or scale gestures). The action taken when a ges-
ture event (e.g. tap, double tap, press and hold) is received
is determined by the attached listeners which can modify
the component’s behaviour or appearance (e.g. location or
colour).

The presentation layer contains components, scenes, and
a canvas. Components range from graphical primitives (e.g.
rectangle, polygon, ellipse, and line) to more complex user
interface widgets (e.g. menu, keyboard). Scenes encapsulate
and separate the input processing and presentation of one
aspect of an application from another. An example of using
scenes in an application is to have one main content scene
and separate visualization scenes that contain different busi-
ness logic and interfaces. A scene change can be triggered to
navigate between scenes. The canvas component is the root
component of every scene. The canvas acts as the link be-
tween the global input processing layer and the presentation
layer. All input events pass through the canvas component,
which then further propagates events to their destinations.
The canvas also contains methods for checking which com-
ponents are located at a specified screen position and it is
responsible for recursively drawing the canvas with all its
child elements. For rendering of components, the Process-
ing toolkit is used [9].



3. Applications
We have developed a number of novel applications that uti-
lize the MT4j toolkit in different ways. These applications
range from software visualization, digital cardwalls, gestural
interaction techniques, to strategy games. We present two of
these applications followed by a discussion about the use of
the toolkit and implications for future toolkits.

SourceVis [1, 3] is a collaborative application for visual-
izing the structure and evolution of software systems. The
aim is to help developers working in co-located teams ex-
plore how a system has been structured by viewing met-
ric and evolution based visualizations. These steps can help
identify what parts of a system are large and likely need to
be refactored. SourceVis is designed for use on various sized
digital surfaces (tabletops and walls) within co-located envi-
ronments, to support multiple users, and to display multiple
visualizations at once. SourceVis is approximately 50K lines
of code built on top of MT4j. All the visualizations were
developed from scratch but influenced from existing liter-
ature, and some Java libraries were integrated to help im-
prove the visualizations. SourceVis has visualized a number
of Java systems from the Qualitas Corpus [12]. We evaluated
SourceVis with professional developers working in pairs on
a multi-touch tabletop to complete a range of software main-
tenance tasks. We found that the prototype was effective
for identifying trends and outliers of classes and packages
which highlighted potential refactoring opportunities. Figure
3(a) shows two developers exploring different visualizations
about JHotDraw.

Story walls are common among Agile software develop-
ment teams and are typically a paper artefact. Electronic ver-
sions of story walls exist to provide benefits over their paper
based counter parts, such as distributed collaboration, con-
tent generation, or content archival, but take away from the
traditional form of interaction a paper wall has. We devel-
oped e-Wall [5] which is a multi-touch Agile story wall de-
signed for a multi-touch tabletop to maintain the original feel
and interaction of a paper wall and to support team meet-
ings. The prototype was evaluated with Agile practitioners
and found to be effective for supporting Scrum team meet-
ings.

4. Discussion
We now discuss MT4j based on the requirements by Cirelli
and Nakamura [4] that a gesture recognition framework or
toolkit should meet to support interactive touch applications
and from our own experience at developing collaborative
applications (§3).

Flexible and Extensible. We used existing atomic ges-
tures and experimented creating some new ones such as
drawing shapes for specific tasks. While we could extend
the default gesture set the majority of the time participants
in our user studies preferred basic atomic gestures for selec-
tion, manipulation, and navigation tasks.

(a) SourceVis – developers working individually in parallel synchronously,
visualizing metrics and dependencies of a system within different moveable
windows.

(b) eWall – a developer moving cards on the Agile cardwall.

Figure 3. Sample applications developed with MT4j.

Fast and Accurate. The gestures in general were fast at
detecting the touch points from the participants. This was a
combination of using the TUIO protocol and the prototype
hardware developed by ourselves following existing guide-
lines [10]. The accuracy of the touch detection was not as
precise as required due to calibration of the optical tracking
and lighting conditions. The accuracy was also dependent on
how participants interacted with their fingers.

Multi-touch and Multiple Users. Multi-touch was very
well supported. At any one point in time we did not have
more than 50 touch points being detected. There did not
appear to be any limit on the number of touch points but
we did not test for any extremes. It is difficult to develop
multi-user interaction especially when it comes to associ-
ating touch points to different users. We have found with
all multi-touch toolkits is that they can not distinguish be-
tween multiple users interacting simultaneously effectively.
These issues can also be highly dependent on the hardware
detection platform as well. We found that when participants
were working in different areas on the tabletop and differ-
ent scenes there were no issues. Occasionally when they
were interacting with the same scene there were issues with
the system being able to distinguish which touch points be-
longed to each user and subsequently this caused unexpected
behaviour and confused the participants.

Spatial Invariance. Gestures could be performed at any
location on the surface. For example, we had a global menu
for selecting different visualizations which was displayed
when a user performed a press and hold gesture on the main
canvas component.



Continuous Feedback. A blue circle was displayed
around each finger to identify touch points. When a touch
and hold gesture was performed a timed red circle around
the touch point would be displayed to indicate the start and
end of the gesture, and upon completion an action was per-
formed.

Easy Prototyping. A number of basic examples along
with an extensions library were available for prototyping ap-
plications. A significant amount of effort was required to
build something more substantial. Every object that was dis-
played had to be rendered as a geometric shape so all classes
had to extend one of the existing built in shapes. There ex-
isted very few user interface controls and menus, hence it
was time consuming to build our own widgets. Prototyping
in MT4j is not as fast as toolkits like Processing [9].

Symbolic and Time-Constrained Gestures. We did not
implement any symbolic gestures. Instead we had buttons
that were used as hot keys for getting back to the main can-
vas if other windows were being display, and buttons to dis-
play a window at full screen or close a window. We be-
lieve, depending on the use cases symbolic gestures could
be implemented as it is important for making smooth in-
teractions. Determining what symbolic gestures to use for
certain tasks and making them discoverable for the end-user
can be problematic though. Tap and press and hold gestures
are supported, but we did now explore other forms of time-
constrained gestures.

Territories. We did not explore territoriality (e.g. per-
sonal and shared territories) in great detail [11]. The canvas
was used as a shared territory. Separate windows could be
displayed which facilitated personal territories, whereupon
users could move windows to different areas of the surface
but with no restrictions on who could interact with the win-
dows.

Free-Form Gestures. Drag and lasso gestures for mov-
ing components around the screen and grouping of compo-
nents is supported. Drag worked relatively well, but lasso
for selection was not as effective when there were many ob-
jects to select. Then deselecting an object from a group (via
another lasso gesture) or dragging the grouped objects was
cumbersome and not very effective.

Sequential and Cooperative Gestures. We did not ex-
plore whether sequential and cooperative gestures were sup-
ported, but would like to do this as part of future work.

Ongoing Development Support. Despite providing a
valuable toolkit for the community ongoing development
efforts appear to have ceased (at least publicly), even though
there are many developers building upon the toolkit. We
have also noticed this with other toolkits. Ongoing support
is important to sustain these toolkits.

Acknowledgments
This work was supported by the New Zealand Ministry of Science and
Innovation, TelstraClear, Victoria University of Wellington, and the Cana-
dian NSERC SurfNet network. Thanks to the original MT4j developers at
Fraunhofer and to members of the NUI Community Group for support no-
tably: Seth Sandler, Nolan Ramseyer, Memo Akten, Jordan Hochenbaum
and Owen Vallis. Thanks to Roger Cliffe, Pippin Barr, and Rilla Khaled for
technical help. Thanks to the students who developed software prototypes.

References
[1] C. Anslow. Collaborative Software Visualization in Co-

located Environments. PhD thesis, Victoria University of
Wellington, 2013.

[2] C. Anslow, P. Campos, and J. Jorge, editors. Collaboration
Meets Interactive Spaces. Springer, 2016.

[3] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis:
Collaborative software visualization for co-located environ-
ments. In Proc. VISSOFT. IEEE, 2013.

[4] M. Cirelli and R. Nakamura. A survey on multi-touch ges-
ture recognition and multi-touch frameworks. In Proc. In-
ternational Conference on Interactive Tabletops and Surfaces
(ITS), pages 35–44. ACM, 2014.

[5] M. Crisp. e-Wall: a multi-touch agile story wall. Honours
Report, Victoria University of Wellington, 2011.

[6] M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza.
TUIO – a protocol for table based tangible user interfaces.
In Proc. International Workshop on Gesture in Human-
Computer Interaction and Simulation, 2005.

[7] D. Kammer, G. Freitag, M. Keck, and M. Wacker. Taxonomy
and overview of multi-touch frameworks: Architecture, scope
and features. In Proc. Workshop on Engineering Patterns for
Multitouch Interfaces, 2010.

[8] U. Laufs, C. Ruff, and J. Zibuschka. MT4j – a cross-platform
multi-touch development framework. In Proc. Workshop on
Engineering Patterns for Multi-Touch Interfaces at EICS.
ACM, 2010.

[9] Casey Reas and Ben Fry. Processing: A Programming Hand-
book for Visual Designers and Artists. MIT Press, 2007.

[10] J. Schöning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges,
J. Hook, M. Löchtefeld, N. Motamedi, L. Muller, P. Olivier,
T. Roth, and U. von Zadow. Multi-touch surfaces: A technical
guide. Technical Report TUM-I0833, University of Munster,
2008.

[11] S. Scott, S. Carpendale, and K. Inkpen. Territoriality in
collaborative tabletop workspaces. In Proc. CSCW, pages
294–303. ACM, 2004.

[12] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated col-
lection of Java code for empirical studies. In Proc. APSEC,
pages 336–345. IEEE, 2010.

[13] J. Wobbrock, M. Morris, and A. Wilson. User-defined ges-
tures for surface computing. In Proc. CHI, pages 1083–1092.
ACM, 2009.


